类Sora模型到底懂不懂物理?字节完成系统性实验证明
Sora爆火以来,模明“视频生成模型到底懂不懂物理规律”受到热议,型到系统性实但业界一直未有研究证实。底懂近日,不懂字节跳动豆包大模型团队公布最新论文,物理完成研究历时8个月,字节围绕“视频生成模型距离世界模型有多远”首次在业界完成系统性实验并给出明确结论:视频生成模型可以记忆训练案例,验证但暂时还无法真正理解物理规律,模明做到“举一反三”。型到系统性实
图灵奖得主、底懂Meta首席AI科学家杨立昆点赞并转发了该研究,不懂表示“结论不令人意外,物理完成但很高兴终于有人做了这个尝试!字节”
自OpenAI发布Sora模型以来,验证很多视频生成模型都会强调其生成结果对物理规律的模明遵循。豆包大模型视觉团队相关小组,对视频生成模型究竟能否从视觉数据中“发现”并“理解”物理定律感到好奇,决定深入研究。
历时8个月,该团队完成了业界首个系统性的实验研究。团队通过专门开发的物理引擎合成了匀速直接运动、小球碰撞、抛物线运动等经典物理场景的运动视频,用于训练基于主流DiT架构的视频生成模型。然后,通过检验模型后续生成的视频在运动和碰撞方面是否符合力学定律,判断模型是否真正理解了物理规律,并具有“世界模型”的潜力。
实验中设计的不同运动场景
豆包大模型团队的实验发现,即使遵循“Scaling Law”增大模型参数规模和数据量,模型依然无法抽象出一般物理规则,做到真正“理解”。
以最简单的匀速直线运动为例,当模型学习了不同速度下小球保持匀速直线运动的训练数据后,给定初始几帧,要求模型生成小球在训练集速度区间内匀速直线运动的视频,随着模型参数和训练数据量的增加,生成的视频逐渐更符合物理规律。
然而,当要求模型生成未曾见过的速度区间(即超出训练数据范围)的运动视频时,模型突然不再遵循物理规律,并且无论如何增加模型参数或训练数据,生成的结果都没有显著改进。这表明,视频生成模型无法真正理解物理规律,也无法将这些规律泛化应用到全新的场景中。
通过进一步的实验分析,研究团队得出结论,“生成新视频时,模型主要依赖对训练案例的记忆和匹配。视频生成模型就像一个只会‘抄作业’的学生,一旦遇到从未见过的场景,如不同大小、速度的物体相互作用,就会‘犯迷糊’,生成结果与物理规则不符。”
不过,研究中也有一个好消息:如果训练视频中所有概念和物体都是模型已熟悉的,此时加大训练视频的复杂度,比如组合增加物体间的物理交互,通过加大训练数据,模型对物理规律的遵循将越来越好。这一结果可为视频生成模型继续提升表现提供启发。
据了解,本研究两位核心一作都非常年轻,一位是95后,一位是00后,在豆包大模型团队专注视觉领域的基础研究工作。作者们一直对世界模型感兴趣,在8个月的探索中,他们阅读了大量物理学研究文献,也尝试从游戏中获得研发灵感,历经多次失败后,最终一步步确定研究思路和实验方法。
-
文章
7
-
浏览
4
-
获赞
156
热门推荐
-
《蜘蛛侠4》官宣定档2026年7月 《尚气》导演执导
索尼影业官宣《蜘蛛侠4》电影将于2026年7月24日上映,和外界预测一致,将由《尚气》导演Destin Daniel Cretton执导。Cretton在离开《复仇者联盟5》电影项目后,由罗素兄弟接手寿春之战是怎么回事?在怎样的背景下爆发的?
曹魏甘露二年至三年(257年—258年),魏大将军司马昭在寿春与将近二十万人的诸葛诞军、东吴军进行了一次功臣作战,史称“寿春之战”,以魏军获胜告终。接下来趣历史小编就给大家带来相关介绍,希望能对大家有李世勣在贞观时期不用改名,为何唐太宗去世就改为李绩?
唐朝(618年—907年),是继隋朝之后的大一统中原王朝,共历二十一帝,享国二百八十九年。等唐玄宗即位后便缔造了全盛的开元盛世,使唐朝达到全盛。天宝末年,全国人口达八千万左右。安史之乱后接连出现藩镇割为什么太上皇李渊的待遇在贞观四年之后越来越好?
唐朝(618年—907年),是继隋朝之后的大一统中原王朝,共历二十一帝,享国二百八十九年。等唐玄宗即位后便缔造了全盛的开元盛世,使唐朝达到全盛。天宝末年,全国人口达八千万左右。安史之乱后接连出现藩镇割Vans Old Skool Pro BMX 全新 Larry Edgar 签名鞋款上架
潮牌汇 / 潮流资讯 / Vans Old Skool Pro BMX 全新 Larry Edgar 签名鞋款上架2020年02月19日浏览:5531 日前,在刚刚结束开封府在北宋时期为什么拥有特别的地位和影响?
北宋(960年—1127年),是中国历史上继五代十国之后的朝代,传九位皇帝,享国167年。与南宋合称宋朝,又称两宋,因皇室姓赵,也称赵宋。那么下面趣历史小编就为大家带来关于北宋开封府尹的地位影响为什么为什么说朱厚照同样非常重视和享受皇帝的权力?
明朝(1368年―1644年 ),中国历史上的朝代,明太祖朱元璋建立。初期建都南京,明成祖时期迁都北京。传十六帝,共计276年。明朝时期君主专制空前加强,多民族国家也进一步统一和巩固。明初废丞相、设立荣耀遥遥领先:Magic6 Pro获DXOMARK四项第一
荣耀Magic6 Pro荣获DXOMARK四项第一,其中摄像头、自拍、电池、屏幕DXOMARK得分分别为158分、151分、157分以及157分。这也从侧面说明,荣耀Magic6 Pro的影像、续航、锐步 Question Mid 乔治城配色“Georgetown”鞋款抢先预览
潮牌汇 / 潮流资讯 / 锐步 Question Mid 乔治城配色“Georgetown”鞋款抢先预览2020年02月23日浏览:2714 既红蓝鸳鸯及燕麦配色之后,隋炀帝的失败如何为唐太宗提供了血淋淋的教训?
唐朝(618年—907年),是继隋朝之后的大一统中原王朝,共历二十一帝,享国二百八十九年。等唐玄宗即位后便缔造了全盛的开元盛世,使唐朝达到全盛。天宝末年,全国人口达八千万左右。安史之乱后接连出现藩镇割历史上的巨鹿之战有多惨烈?楚军坑杀二十万秦军
历史上的巨鹿之战有多惨烈?这是秦末大起义中,项羽率领数万楚军(后期各诸侯义军也参战),同秦名将章邯、王离所率四十万秦军主力在巨鹿进行的一场重大决战性战役,感兴趣的读者可以跟着趣历史小编一起往下看。破釜决定立李治为太子后,唐太宗当着长孙无忌的面说了什么?
唐朝(618年—907年),是继隋朝之后的大一统中原王朝,共历二十一帝,享国二百八十九年。等唐玄宗即位后便缔造了全盛的开元盛世,使唐朝达到全盛。天宝末年,全国人口达八千万左右。安史之乱后接连出现藩镇割国家博物馆五一展览 收藏资讯
【中华收藏网讯】从4月29日开始,我们迎来了为期三天的“五一”小长假,既是和家人欢聚的时光,也是出游、学习充电的好机会。在文化底蕴深厚的北京,像故宫博物院、中国国家博物馆、中国美术馆、首都博物馆,都有孙坚在讨伐董卓战争过程中表现优异,为何却不算联军成员?
三国(220年-280年)是中国历史上位于汉朝之后,晋朝之前的一段历史时期。这一个时期,先后出现了曹魏、蜀汉、东吴三个主要政权。那么下面趣历史小编就为大家带来关于孙坚参加了讨伐董卓,为什么史书却不把他先天政变中,李隆基有将太平公主作为主要政变目标吗?
唐朝(618年—907年),是继隋朝之后的大一统中原王朝,共历二十一帝,享国二百八十九年。等唐玄宗即位后便缔造了全盛的开元盛世,使唐朝达到全盛。天宝末年,全国人口达八千万左右。安史之乱后接连出现藩镇割